Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms.
نویسندگان
چکیده
The focus of this review is the molecular genetics, including consensus NAT1 and NAT2 nomenclature, and cancer epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Two N-acetyltransferase isozymes, NAT1 and NAT2, are polymorphic and catalyze both N-acetylation (usually deactivation) and O-acetylation (usually activation) of aromatic and heterocyclic amine carcinogens. Epidemiological studies suggest that the NAT1 and NAT2 acetylation polymorphisms modify risk of developing urinary bladder, colorectal, breast, head and neck, lung, and possibly prostate cancers. Associations between slow NAT2 acetylator genotypes and urinary bladder cancer and between rapid NAT2 acetylator genotypes and colorectal cancer are the most consistently reported. The individual risks associated with NAT1 and/or NAT2 acetylator genotypes are small, but they increase when considered in conjunction with other susceptibility genes and/or aromatic and heterocyclic amine carcinogen exposures. Because of the relatively high frequency of some NAT1 and NAT2 genotypes in the population, the attributable cancer risk may be high. The effect of NAT1 and NAT2 genotype on cancer risk varies with organ site, probably reflecting tissue-specific expression of NAT1 and NAT2. Ethnic differences exist in NAT1 and NAT2 genotype frequencies that may be a factor in cancer incidence. Large-scale molecular epidemiological studies that investigate the role of NAT1 and NAT2 genotypes and/or phenotypes together with other genetic susceptibility gene polymorphisms and biomarkers of carcinogen exposure are necessary to expand our current understanding of the role of NAT1 and NAT2 acetylation polymorphisms in cancer risk.
منابع مشابه
Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis.
Aromatic and heterocyclic amines require metabolic activation to electrophilic intermediates that initiate carcinogenesis. N-Acetyltransferase 1 (NAT1) and 2 (NAT2) are important enzymes in the biotransformation of these carcinogens and exhibit genetic polymorphism. Human NAT1 and NAT2 alleles are listed at: http://www.louisville.edu/medschool/pharmacology/NAT.html by an international gene nome...
متن کاملAssociation between polymorphisms at N-acetyltransferase 1 (NAT1) & risk of oral leukoplakia & cancer
BACKGROUND & OBJECTIVES N-acetyltransferases 1 and 2 (NAT1 and NAT2) are important enzymes for metabolism of tobacco carcinogens. Due to polymorphisms, improper activities of these enzymes might lead to the formation of DNA adducts that may modulate risk of tobacco related oral precancer and cancer. Previously, it was shown that NAT2 polymorphisms did not modulate the risk of oral precancer and...
متن کاملEffect of NAT1 and NAT2 genetic polymorphisms on colorectal cancer risk associated with exposure to tobacco smoke and meat consumption.
N-Acetyltransferases 1 and 2 (NAT1 and NAT2), both being highly polymorphic, are involved in the metabolism of aromatic and heterocyclic aromatic amines present in cigarette smoke and red meat cooked by high-temperature cooking techniques. We investigated the effect of differences in acetylation capacity, determined by NAT1 and NAT2 genotypes, on colorectal cancer risk associated with exposure ...
متن کاملExpression of arylamine N-acetyltransferases in pre-term placentas and in human pre-implantation embryos.
Arylamine N -acetyltransferases (NATs) catalyse the acetylation from acetyl-CoA of arylamines and hydrazines. There are two human isoenzymes which show polymorphism, and both enzymes are involved in the activation and detoxification of environmental carcinogens and teratogens. The two human isoenzymes NAT1 and NAT2 show different tissue distribution, with human NAT2 being found in liver and int...
متن کاملGenetic polymorphisms of N-acetyltransferases 1 and 2 and gene-gene interaction in the susceptibility to childhood acute lymphoblastic leukemia.
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. In utero and postnatal exposures to various carcinogens may play a role in the etiology of this disease. N-acetyltransferases, encoded by the NAT1 and NAT2 genes are involved in the biotransformation of aromatic amines present in tobacco smoke, environment, and diet. Their rapid and slow acetylation activity alleles have be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
دوره 9 1 شماره
صفحات -
تاریخ انتشار 2000